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ConclusionsConclusions
For uncertainFor uncertain velocity initial conditionsvelocity initial conditions ::

•• The model errors The model errors decreases decreases with time. with time. 
•• The model errors with and without The model errors with and without diagnostic initializationdiagnostic initialization

are quite are quite comparable and significantcomparable and significant. . 
•• The The magnitude of model errorsmagnitude of model errors is is less dependentless dependent on the on the 

diagnostic initialization perioddiagnostic initialization period no matter it is no matter it is 30 day,60 day 30 day,60 day 
or 90 dayor 90 day. . 
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